首页> 外文OA文献 >Atomistic Insights into Nitrogen-Cycle Electrochemistry : A Combined DFT and Kinetic Monte Carlo Analysis of NO Electrochemical Reduction on Pt(100)
【2h】

Atomistic Insights into Nitrogen-Cycle Electrochemistry : A Combined DFT and Kinetic Monte Carlo Analysis of NO Electrochemical Reduction on Pt(100)

机译:氮循环电化学的原子学见解:结合DFT和动力学Monte Carlo分析Pt(100)上NO的化学还原

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Electrocatalytic denitrification is a promising technology for the removal of NOx species in groundwater. However, a lack of understanding of the molecular pathways that control the overpotential and product distribution have limited the development of practical electrocatalysts, and additional atomic-level insights are needed to advance this field. Adsorbed NO has been identified as a key intermediate in the NOx electroreduction network, and the elementary steps by which it decomposes to NH4+, N2, NH3OH+, or N2O remain a subject of debate. Herein, we report a combined density functional theory (DFT) and kinetic Monte Carlo (kMC) study of this reaction on Pt(100), a catalytic surface that is known to be suitable for the activation of strong covalent bonds, in acidic electrolytes. This approach describes the effects of coverage-dependent adsorbate–adsorbate interactions, water-mediated protonation kinetics and thermodynamics, and transient potential sweeps, on reaction rates and selectivities. The results predict NO stripping curves in excellent agreement with experiments while, at the same time, providing a mechanistic interpretation of observed current peaks. Furthermore, production of NH4+ products is traced to the rapid kinetics of N–O bond breaking in reactive intermediates, whereas rapid hydrogenation of surface N* species prevent competing pathways from forming either N2 or N2O. The combined DFT-kMC methodology thus provides a unique tool to describe the mechanism and energetics of platinum-catalyzed electroreduction in the nitrogen cycle, and this approach should also find application to related electrocatalytic processes that are of technological and environmental interest.
机译:电催化反硝化是一种用于去除地下水中NOx的有前途的技术。然而,对控制过电势和产物分布的分子途径的缺乏了解限制了实际电催化剂的发展,并且需要更多的原子级见识来推动这一领域的发展。吸附的NO已被确定为NOx电还原网络中的关键中间体,其分解为NH4 +,N2,NH3OH +或N2O的基本步骤仍然是争论的话题。在这里,我们报告结合的密度泛函理论(DFT)和动力学蒙特卡洛(kMC)研究此反应在Pt(100)上,催化表面已知适合活化强共价键,在酸性电解质中。该方法描述了取决于覆盖率的吸附物-吸附物相互作用,水介导的质子化动力学和热力学以及瞬态电势扫描对反应速率和选择性的影响。结果预测NO剥离曲线与实验非常吻合,同时,提供了观察到的电流峰值的机械解释。此外,NH4 +产物的产生可追溯到反应性中间体中N–O键断裂的快速动力学,而表面N *物种的快速氢化阻止竞争途径形成N2或N2O。因此,组合的DFT-kMC方法学提供了一种独特的工具,用于描述氮循环中铂催化的电还原的机理和能级,并且该方法也应找到对技术和环境都感兴趣的相关电催化方法的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号